Davenport Introduces New and Improved OEM Replacement Parts

Davenport Machine focuses on continuously improving our genuine OEM parts through redesign and customization to enhance the value of these items for our customers. We do not just sell replacement parts to fix problems—instead, we work with our customers to implement the optimized, durable, and cost-effective solutions they need. Throughout more than 100 years in the business, our primary emphasis has been on delivering quality solutions at competitive prices to our customers.

New and Improved OEM Replacement Parts

At Davenport, our Engineering Exploration and Advancement Group focuses on developing improvements to our parts and manufacturing practices. In the last few years, Davenport has made millions of dollars in investments to improve our production equipment and processes. These capital investments have brought about substantial progress in our manufacturing efficiency and quality, thus dramatically impacting our ability to produce superior parts at competitive prices.

Listed below are some of our new and improved OEM replacement parts:

9-27 Stationary Heads

Davenport’s updated manufacturing process for our 9-27 stationary heads resulted not only in a more aesthetically appealing part, but also a number of improved functions:

  • More accurate taper angles, increasing contact with mating boxes.
  • More accurate spindle positions.
  • Interchangeability with all current Davenport OEM components.

These changes are backwards compatible, so they do not require any changes on the customer’s end.

8-SA-OS Oversize Revolving Heads

Davenport’s 8-SA Oversize Heads are now available in custom sizes up to Ø8.850. This is an improvement from the previous maximum of Ø8.790. This is the largest Revolving Head size allowed that will fit within the ring gear. These larger heads allow customers to get several additional rebuilds on machines that have already been re-bored to an oversize condition, resulting in an increase in the service life of expensive machines by many years. The larger oversize head can be interchanged with all of our OEM parts, and is manufactured with the same quality and precision you would expect from Davenport OEM revolving heads.

SB-849–200 Coolant Pumps

Identifying our traditional coolant pump as Davenport’s single largest contributor of machine noise, we’ve upgraded the system with a robust pump that improves operator comfort and safety, while outperforming on coolant pressure and flow. The older positive displacement gear-pumps, both chain driven and direct drive, produce a distinct noise that can be heard over all other gear and tooling noises. The new SB-849-200 uses centrifugal vane technology to deliver larger amounts of coolant than previously possible, at higher pressures for most viscosity coolants, and while generating less noise, heat, and vibration. The new pump can also handle larger abrasive particles without risking pump seizure.

Key features of this new pump include:

  • Virtually silent operation
  • Average of 8-10 dB drop in machine noise levels
  • Powerful 3 HP motor frees up machine power for chip making when replacing chain-drive units
  • 3 stage stainless steel impellers
  • Carbide seals and bearings
  • Large 2” NPT inlet and outlet to maximize flow
  • 2-3x more flow at typical viscosities
    • 30 GPM at 50 psi (~SAE 30 motor oil / 80 cSt @ at 40° C
    • 45 GPM at 40 psi (~SAE 30 motor oil / 80 cSt @ 40° C
    • Maximum recommended viscosity 500 cSt @ 40° C
  • Available retrofit kits for most Davenport machines
  • Made in USA

BP-600 Cam Operated Rear Brake (Davenport Brake)

Davenport is now manufacturing a new alternative to the standard 5080-187-57-SA rear brake. The BP-600 Cam Operated Rear Brake uses a Cast Iron Brake shoe, and solid bronze drum for a long, trouble-free life. Its main features include:

  • Larger surface area between the shoe and brake drum creating strong braking force
  • Elimination of radial loads being placed on the camshaft that could cause wear in bushings
  • Stops the tool spindles from lunging forward while using extra springs on cam levers or positive return cams
  • Easier adjustments, and long-lasting consistency
  • Less frequent adjustments of the brake, improving function of the high speed clutch
  • Only relies on mechanical actuation through a cam profile and drive dog
  • Interchangeable parts to similar cam operated rear brakes

Innovate With Davenport Machine

Any parts supplier can sell you yet another replacement part for your problem. However, Davenport’s highly trained and experienced staff members are able to provide timely technical support and real solutions to our customers.

For information about these new and improved parts—or any of Davenport’s products—please contact us today.

The Davenport Hybrid Machine – Part 5: New Technologies & Targeted Parts

The HYBRID machine incorporates the best of Davenport’s mechanical versatility with the CNC Technology you need to address today’s most difficult manufacturing challenges.

This article highlights some of the new technologies incorporated in the HYBRID machine, and speaks to some of the parts it is better able to produce.

Revolving Heads

HYBRID revolving heads utilize proven HP spindle technology. With over 200 HP heads in operation for a combined total of nearly 1,600 years and over 3 million hours of run time, this technology has stood the test of time, and produced outstanding results for our customers. Every customer who has bought a revolving head has bought more. Even the first heads installed are still making parts today, and 80% of them have never required any maintenance whatsoever.

HYBRID revolving heads will be offered in four different configurations, with both 7/8” and 5/8” capacity spindles, as well as Aligning Gear and spindle stopping clutch gear-trains.

High Pressure Coolant

Many of today’s parts are being spec’d out of difficult to machine materials. Whether it’s pre-hardened materials, tool steels, stainless or lead-free alloys, each presented a challenge for screw-machine operations.

When we looked at ways to improve chip control and tool life, one of the most promising methods was using high-pressure coolant. Traditional flood coolant may work on brass and 12L14, but it doesn’t do the job when you are turning A286. You need directed streams of coolant, at high pressure, to be able to break through the vapor barrier created by the high cutting temperatures on these materials. Because the HYBRID has multiple tools engaged with the part simultaneously and since screw machines use wide tools with unconventional chip geometry, special considerations need to be made to effectively use high pressure coolant in the HYBRID machine.

We turned to Chip Blaster, a market leader in high-pressure coolant pumps, and integrated their 1,000 PSI, no reservoir pump into our machine. ChipBlaster can deliver up to 10.5 gallons per minute to a ceiling-mounted manifold, which can direct coolant to up to 8 tools at any point in the cycle. It’s fully programmable, so it’s only flowing coolant when the tool is in the cut. The pump fits nicely under the stock reel, so it doesn’t take up any more real estate on your shop floor.

CNC Capabilities

The HYBRID delivers shorter setups by using its CNC capabilities to digitally replace and store many of the “mechanical adjustments” from older platforms. We eliminated mechanisms like the side cam banks and turnbuckles. Saved programs now contain information like speeds, feeds, and tool lengths, so you can quickly reset a job on the second run, and make parts that are in-tolerance on the first cut. Dialing in the sizes has never been easier. Many major adjustments are tool-free, precise, and take seconds.

When running families of parts, we suggest designing ZERO-POINT DATUM tooling, a concept where the cut-off is the same distance from the spindle face for each part in the family. Inserts and tools can be swapped without the need to mechanically re-align tools, further reducing setup time and complexity.

Targeted Parts

What kind of parts are we targeting on the HYBRID? Essentially, parts that couldn’t be done effectively on a Davenport before.

Features like angular trepan grooves where the tool needs to make 2 axis movements are perfect for this machine. The HYBRID will excel at holding tight tolerance OD’s, with a particular improvement in overall length (OAL) control over previous models. The thrust ring no longer holds the head in place. The Revolving Head’s axial position is held by the bearings, and does not vary from index to index, so tool lineup, and OAL capabilities have all been dramatically improved. This also improves the ability to hold very fine finishes on cut-offs and seal faces. The HYBRID’s high degree of pre-load and stiffness is critical, and will give you an advantage over other screw machine platforms when making parts from difficult to machine alloys, or with thin walls.

The Davenport Hybrid Machine – Part 4: Machine Upgrades

We’ve upgraded many sub-systems on the HYBRID to meet our customer expectations of what a modern machine should be. For instance, the first thing people notice when they walk up to the HYBRID is that they can actually hear and see what is going on inside. A number of changes to the drivetrain design, gear quality, and the enclosure have cut the background volume of the machine in half. It’s roughly the equivalent of going from standing next to a lawnmower, to eating inside a casual restaurant. To aid visibility, we replaced the single tube light by 4 banks of powerful LED’s, with twice the illumination, and directed in a way that there are no more shadows in the work zone. Coolant levels and pressures are all monitored digitally, and all lube tanks, air filters, and fire suppression triggers have been relocated on a central “PM” panel near the operator.

This article will delve into some of the more specific machine upgrades we’ve implemented on the new Davenport HYBRID machine, on shave tools, chips, conveyors, and casting.

Shave Tools

“Do we have too many skilled set-up people?” This is a question you probably never hear at your shop. It’s a fact of life in this industry: highly-skilled set-up people are in short supply, and their time is too valuable to waste.

Shave-tool related skills represent one of the most challenging skills to master. Adjusting one of these tools properly is all about feel, and we figure 30% or more of set-up skills and set-up time is dedicated to shave tools, and fixing their problems. Not having to put a shave tool in the machine just makes your set-ups easier and faster. It also makes your set-ups and your machines more productive in the long run. Opening the “shave” position allows the HYBRID to manufacture what may have been traditionally considered 6-spindle parts on a 5-spindle machine.

Chips

With the new HYBRID, our Davenport team put a lot of effort into improving the chip evacuation. A lot of the newer alloys that our customers struggle with tend to be stringy: they tend to have difficulties breaking a chip. To combat this problem, we took a look at all the different ways we could make sure chips ended up in the chip barrel, and not wrapped around your tools.

We eliminated the center drive and the tool post stops. You don’t need them anymore. You essentially have a digital version of the tool post stop in the offset page. We tried to let the chips fall down through the machine unimpeded. You’ll notice there is no chip funnel under the machine, because we are not trying to get those chips to ride up a 4” wide auger anymore.

Conveyor

The HYBRID boasts a 22” wide chip conveyor belt built into the base pan. The conveyor and pan have been designed as a 360° wash-down system. As chips fall onto the sloped pan surfaces, everything is washed down into the chip load zone of the conveyer by the oil. You’ll get more chips out of your machine without manual intervention, and those chips will be drier. This way, you don’t have to spin all that oil back out, and keep replenishing your sump.

Base

Speaking of the sump, the entire HYBRID machine base has been redesigned from the ground up. It has roughly three times the oil capacity of previous platforms, to help maintain thermal stability over long running jobs. The massive steel tubular bracing provides a super stable, vibration-dampening platform for the machine bed. The conveyor load area is capable of flowing 50 gallons of oil per minute, so you can run both low- and high-pressure coolant pumps flat out, and be assured you will not swamp the machine. The machine base is equipped with two huge cartridge-style pickups at the bottom of the sump, to make sure your tools never run dry.

Even with all this extra capability, the HYBRID base and enclosure has a similar footprint to our HP or Model-B platforms, and it takes up less than half the floor-space of most competitive multi-spindle machines.

Casting

We’ve strategically reinforced several areas of the main casting to allow us to hold those tighter tolerances. We’ve added significant amounts of material, in particular, around the 1st position slide. From a layout perspective, you’d like to do the most aggressive machining in the 1st-position. But on previous platforms, the cam bank mechanics really hindered our ability to provide a rock-solid casting in that area. On the HYBRID however, the side cam bank is gone, and it’s allowed us to gusset the entire 1st position slide mount. We’ve also been able to obsolete the 2nd position linkage bar. The result is that the 1st position slide is now mounted on one of the heaviest parts of the casting, and can take tremendous cuts without vibration.

The Davenport Hybrid Machine – Part 3: Digital Size Control

Now that we’ve improved the two fundamentals of multi-spindle production, being able to place the part repeatedly in the same position at every index, and being able to deliver the cutting edge to the same point every time, we can leverage some of this machine’s unique CNC abilities to deliver more accurate parts. The HYBRID has the ability to offset each of these tools, for every spindle independently, in .0001” increments. That’s a huge deal for anyone running parts on a Davenport now.  You can’t pick a tenth off using mechanical turnbuckles on a machine. Now you have the ability to run your first 5 parts, and DIGITALLY dial in the nominal size spindle by spindle for each tool. You can hold a very narrow tolerance band across all five spindles on your machine, and all without mechanical adjustment.

As your tools wear, you have a “One Touch” adjustment for each tool, so as your average part size starts to grow a few tenths from nominal, you can go into the control, on the fly, and digitally adjust your form tool to bring those parts back into the middle of your part tolerance.

Next Gen Controls

The HYBRID has been upgraded with a new, state of the art, CNC control package.  It boasts a 15-inch, color touchscreen display, engineered for rugged machine shop environment.  The large screen size allowed us to combine multiple small pages of the older controls into a much more user-friendly layout.  Fewer pages means less switching between screens and fewer menu layers to get to the functions you need most. Color-coded information is easier to absorb than text, and allows us to direct the operators attention to the most vital information quickly. Everyone owns a smartphone or I-pad, and everything is touchscreen. That’s how people think and expect to interact with their technology.

Energy Efficiency

This technology is not just a pretty face.  The hardware hidden inside the control cabinet is designed for maximum reliability and energy efficiency.  With drive features like power-on-demand and regenerative braking, the HYBRID uses 50% less electricity, and generates 50% less waste heat than previous Davenport platforms.  You save money twice, lowering your machine electricity consumption, and your Air Conditioning bills at the same time.

Size Control

In an experiment on size control, we took one of our customer’s machine run-off tests and applied it across all three of our platforms, with the exact same tooling, speeds, and feeds on all three machine models.

Sample SIze Distribution - Formed DIameters

The Model-B machine’s part size distribution tends to be very broad, with lot of outliers, big and small parts. As you step up to the HP, you tend to see a tighter distribution. The HP can make parts that are 2 to 3 times better than the Model-B. But the star of the show is the HYBRID, which was able to put all of its parts within a 4 or 5 tenth band.

This speaks volumes about what the HYBRID platform can do.

Operator Training

For some, CNC technology can be intimidating.  That’s why we involved both experienced CNC users, and traditional mechanical Davenport operators, when designing the control interface.  We made it easy for both groups to run this machine, and lowered the learning curve by simplifying the most common and difficult mechanical adjustments.

Nearly 20 years ago, Davenport established Davenport Machine University to train multi-spindle operators to use and maintain both the Model-B and Servo-B platforms.  In the last 10 years, we’ve expanded our program to serve our internal employees as well, training several new classes of green machinists, and providing continuing education for our seasoned craftsmen.  We have experience teaching 100’s of graduates, and we can train your workforce too.

 

 

The Davenport Hybrid Machine – Part 2: Design Enhancements

The new Davenport HYBRID is the future of Davenport Multi-Spindle machine tool technology. It incorporates the best of the mechanical versatility you would come to expect from Davenport, and adds to it the CNC Technology you need to address today’s most difficult manufacturing challenges.

In this post, we dive into some of the design enhancements applied to the Davenport HYBRID machine with the goal of increasing profitability and productivity for our customers.

Bearings

The first major HYBRID upgrade is how we support the revolving head, or the spindle carrier, into the main machine casting.  Older versions of the Davenport Machine had a revolving head that was piloted in a hand-scrapped bore with a few thousandths of running clearance.  For the HYBRID platform, we’ve taken our popular HP head design, and upgraded it with a set of 9” diameter bearings to rigidly and accurately mount it to the bed of the machine.  This is a ZERO clearance fit, giving you rigid, accurate, and precise work holding so that the workpiece is introduced to the exact same place, every time the machine indexes.

CNC Slides

We then looked at how to deliver the cutting edge to the workpiece.  The most obvious differences on the HYBRID platform are the new CNC slides.  Gone are the days of dovetail slides, tapered gibs, and the constant adjustments and quality issues that go along with them.  Our new CNC slides are modular in nature, so customers are not limited to using old Davenport tooling. They are built upon rigid, pre-loaded linear rail technology, like you would expect to find on high-end CNC lathes and mills.  This allows our customers to purchase a brand new HYBRID machine at or near the cost of rebuilding an older Acme, New Britain, or other multi-spindle machine platforms, by moving the same tools into the new HYBRID.

Access Now: Davenport Hybrid Machine – Frequently Asked Questions

2-axis CNC slide

The 2-axis CNC slide on the fourth position will accept standard Davenport tooling, as well as 5/8 square shank stick tooling commonly found on CNC lathes.  It gives customers the ability to:

  • Do profiling, angular trepan grooves, single point threading etc., with the XZ CNC slide.
  • Place ID tooling in this slide, and do INTERNAL grooves, deburring and complex operations from this traditionally external tooling position.
  • GANG tools, doing both OD and ID work on the same CNC controlled slide.
  • Stagger tools, having a standard end-working tool, like a drill, do it’s work early in a cycle, and once it has backed out, bringing another tool into the bore to machine o-ring grooves on the inside of a part. This way, even though you have a 5 spindle machine, you can bring up to 8 different ID tools into the workpiece.

The XZ slide is standard equipment for the 4th position on the HYBRID, and will be available as an optional 3rd position attachment in the near future.

Davenport DTS Dovetail Tooling System

Toolholders

The new tool holders of the Davenport DTS Dovetail Tooling System are available as Skive, Forming or generic 5/8 lathe stick tool configurations.  With precision taper adjustments, length positioning, and center height adjustments, the DTS system is the most user friendly tooling to date.  And all tool holders are equipped with thru-tool High Pressure coolant porting, which directs a high-pressure knife-edge stream right at the cutting edge of the insert, without placing copper lines and moveable nozzles in the cutting zone.

Inserts

The Davenport DTS Dovetail Tooling System is specifically designed to be used with disposable carbide insert technology.  Today’s cutting edge technology from major carbide insert OEMs provide the best tool-edge possible at the cheapest cost per part.  The advanced tooling materials, hundreds of available coatings, and easy edge replacement make the HYBRID tool changes less frequent, easier than re-grinding, and more efficient.

The Davenport Hybrid Machine – Part 1: Solutions & Goal Driven Change

The new Davenport HYBRID is the next generation of Davenport Multi-Spindle machine tool technology. It incorporates the best of the mechanical versatility you have come to expect from Davenport, and adds to it the CNC Technology you need to address today’s most difficult manufacturing challenges.

The HYBRID is a super-precise machine platform.  It leverages the power of an intuitive CNC interface to make operation and set-ups easier than ever. With digital size control, CNC single point threading and turning capabilities, the HYBRID can hold tolerances never before produced on a Davenport.  It does so while delivering a superior Return On Investment for your capital equipment dollars.

Solutions

The Davenport HYBRID was developed specifically to address, and provide answers to some of the industry’s toughest challenges.

  • Tougher Materials – aerospace alloys, stainless steels, high strength pre-hardened steels
  • Tighter Tolerances – increasingly tight part requirements, along with tougher to machine materials, have pushed many cam-operated machines beyond their capabilities to consistently produce parts made within the print requirements
  • Smaller Job Sizes – require more frequent machine changeovers, that must be done quickly and efficiently, or risk eroding profits, or worse, creating losses
  • Changing Workforce – experienced operators retiring at a rapid rate are being replaced by a new generation of operators starting out with an entirely different skillset. With reduced in-house training programs, and demands to shorten the learning curve for new operators, companies are faced with a real problem

The Davenport HYBRID brings real solutions to these pressing issues.

Goal Driven Design

Our design philosophy started with identifying the end goal. In this case, increasing profitability and productivity for our customers. With that in mind, we started on a multi-year effort to evaluate each and every system on our machine for performance, and identify where we could make mechanical improvements. We then targeted the application of CNC technology, and state-of-the-art motion control, to areas that would maximize the benefit without significantly increasing the cost or complexity. The HYBRID is an optimal blend of CNC and cam-operated mechanical motions. Many machine functions are still mechanical, because it is the most robust and cost effective means of making precision parts. Profits and productivity, thru innovation, has guided every HYBRID design decision, and that is what separates this machine from the competition.

 

 

Next, check out Part 2 of the Hybrid Blog series, which covers “Design Choices.”

Preventative Maintenance and Troubleshooting for Multi-Spindle Screw Machines

Screw machines simultaneously cut materials using a number of tools mounted on a spindle, yielding small final pieces. At the heart of these machines is a drum that operates multiple spindles, each of which rotates horizontally to perform tasks on the workpiece.

These machines can perform a number of operations on the workpiece within one rotation. They consist of many intricate parts, which perform complex tasks through the use of automated systems.

As such, it’s important to regularly troubleshoot and maintain multi-spindle machines to ensure smooth operation within your facility. Keeping your machinery cool, lubricated, and in good repair means less costly downtimes and higher degrees of accuracy in your manufacturing processes.

Set Up a Troubleshooting Checklist

Multi-spindle machine operators must ask themselves a number of questions to ensure their machines are in proper working order:

Is the Form Tool Diameter Changing in Size, Varying, or Chattering?

Check that the tool’s setup and head positioning maintain maximum rigidity. Then, look for any sloppy work spindle bearings and make sure that the tool has the proper center height setting. Verify the proper grind of your tool and check to see whether it’s properly supported during cutting. Look for a loose slide or tool, and make sure you tightly fasten all the bolts. Lastly, check for dull tools and make sure you’re working with the correct stop screw pressure.

Is the Hole too Big?

Verify that the machine is locking the head in the proper position, and check for sloppy spindles as these could signify off-center or chipped center drills. Next, check whether the drill is dulled or loaded up, and make sure the drill and spindle are properly aligned.

Is the Machine Stripping Threads?

Make sure the head’s locked properly, and verify that you’re working with the correct hole and body size. Look at the alignment of the spindle, and check for dull/loaded taps or dies. Finally, check the summary settings to make sure you’ve found the problem.

Does the Length Vary?

Many issues could cause variations in length. Most commonly, worn or sloppy bearings in the spindle or dull-end working tools can push work back into collets. Generally, loose, worn, or dirty collets can cause problems, and you may need to check for the proper feed finger tension on the five spindles.

At the bar end, check for a clean cutoff, and make sure the stock stop is tight, polished extensively, and at the right length of the stop plate. Feed the stock to the stock stop if this isn’t already the case. You should also check head thrust bearings as well as the rolls and pins on the end working cam lever for wear and tear.

Do the Parts Have Burrs on the Cutoff?

Evaluate the stop collar to make sure it has the proper pressure, and make sure the pickoff collet is adjusted properly. See if the cutoff is on center, and check the timing of the closing dog.

Is the Box Tool Dimension Rough or Varying in Size?

The box tool should have a proper grind and feed, so check for these first. Then, make sure the rollers have the proper tension.

Is the Hollow Mill Dimension Rough or Varying in Size?

Verify that the machine achieves the proper grind, and check for worn or loaded cutting edges. Then, look for the proper alignment and feed.

Has an Improper Step or Shoulder Appeared?

First, look at the form tool alignment and the box tool alignment, and then make sure the box tool has an appropriate travel distance. Evaluate the sharpness of the drills and verify that they reach the proper depth. Finally, check for any loose tools or holders.

Are the Rolled Threads Out of Form or Flaky Like the Scissor Type?

Look at the work’s feed or penetration, and check for the proper blank size. See if the blank has a taper, check whether the rolls are on the center of the work, and look for proper roll synchronization. Finally, check rolls for any nicks.

Is the Reamer Chattering?

It’s possible that there might be too much clearance on the spiral relief. You should also check to see whether it’s out of alignment. Make sure the feed is the right size for the particular reamer you’re using, and find and fix any low cutting edges.

Is There Tap Trouble?

If the tap’s cutting below the correct size, you might need a different tap for the job. The tap also must align with the workpiece. Look for proper float in the holder, and check to make sure that the hole’s of the proper size. Finally, check the summary settings.

Is the Knurl Out of Form or Flaky?

Make sure your blank’s the right size, and check both works’ feed and penetration. Look for taper on the blank, and check the knurl pins and the knurls themselves for signs of wear or nicks.

Preventative Maintenance For Multi-Spindle Screw Machine Services

Multi-spindle machines require comprehensive maintenance schedules. While you should perform some tasks daily, other processes require quarterly or yearly checkups.

Daily Maintenance

Make sure you have sufficient lubricating oil levels in the lube pump reservoir. Then, check the machine pan reservoir’s coolant level. It may be necessary to clean the coolant intake pipe screen or pump screen, so check this as well. Make sure the stock reel and its support are in good condition and aligned, since they should be lagged to the floor. Finally, verify that the machine is properly delivering lubricating oil to the work spindle bearings.

Monthly Maintenance

Once a month, take each of these items off the revolving head, clean and inspect them, and replace them if needed:

  • Collets/chucks
  • Feed tubes
  • Feed fingers (also make sure they’re appropriately tensioned)
  • Inner spindles

Then, check on the wear and tear and general condition of the following parts:

  • Stop screws
  • Cross slides
  • Gib adjustments
  • Stock reels and stands

Clean the outer spindles with a boiler brush, and make sure the locating lever is locking correctly and that the roll turns. Check the condition of the following components:

  • Chuck slides, rolls, and pins
  • Cam levers, rolls, and pins
  • Bearings
  • Tooth wear
  • Gear mountings

The shafts are particularly important: check for a potentially twisted front cam shaft, since the locating lever must clear the locating blocks on index, and you want it to make contact, angle side first, with 0.012” pushback when locking.

Check to see whether the revolving head has end play, and adjust the thrust ring if needed. Lastly, make sure that the locking nuts and set screws on the spindle change gear shafts are in good repair.

Quarterly Maintenance

Once every quarter, clean the coolant pan: remove all coolant and get rid of any sediments and fine chips before adding new coolant. If you have long runs that make changing the cams difficult, take the cross slides off and clean them before checking for proper gib adjustments. Remove the plugs at the bottom of the worm gear housing, and flush the housing with an OSHA-approved solvent. Finally, replace the plugs, and fill with fresh oil.

Semi-Annual Maintenance

Twice a year, drain, clean, flush, and refill the main lube pump reservoir. Check the filter, and make sure there isn’t excessive end play in the revolving head or thrust bearings. You should also verify that there’s no excessive looseness in the work spindles or tool spindles.

This is also a good time to check the condition of the electrical controls, including the switches, solenoid valves, wiring, panel box, cables, motors, and other elements, but make sure that only authorized personnel handle electrical control maintenance. Check pneumatics as well, including the air lines, valves, cylinders, and fitting.

Annual Maintenance

Once a year, perform a thorough inspection and cleaning of the entire machine as a unit. Check the tool spindles to ensure proper alignment with the work spindles, and align special attachments to the work spindles as needed.

Check for any cracks or breaks in the cross slides, and make sure all levers, rolls, and pins are in good condition. Check the chip conveyor’s condition as well as the condition of all the lubricating and coolant systems, including the:

  • Lube pump
  • Coolant pump
  • Lube lines
  • Meter units
  • Coolant screens
  • Coolant hoses/valves

Multi-Spindle Success at Davenport Machine

Davenport Machine always seeks to provide the best machines, parts, and attachments in the screw machining industry. We’ve produced cutting-edge machining technology for over 100 years, and we continue to offer revolutionary and valuable machine options for multi-spindle screw machine operators.

To learn more about our machines and how Davenport can help you achieve your machining needs, request a quote today.

Why Choose Genuine Davenport OEM Replacement Parts?

In today’s ultrafast internet environment, companies have an incredible number of options for their purchasing dollars.  Why choose Genuine Davenport OEM Replacement Parts?

As an OEM, we at Davenport Machine, take pride in our 100–year history.  However, time alone does not drive success.  It is the dedication, innovation, and commitment to our customers, learned over our 100-year history that helps us maintain and grow our loyal customer base.

How does Davenport do it?

As stated by our CEO Andy Laniak:  “Davenport Machine is singularly focused on making Davenport the most efficient, the most competitive, value creating production process for our clients to produce large volume, small parts.

We achieve that by doing the following:

  • Davenport Replacement Parts: Davenport carries an inventory of over 4,000 parts, assemblies and attachments to serve our clients.  We don’t cherry pick our inventory to sell parts with the highest margins.  Rather, we fully stock all Davenport parts and are focused on helping customers find the best parts for their needs.
  • Quality: Davenport has invested in excess of $10 million dollars, over the past 3 years, in new equipment, and R&D thru the creation of our innovative Engineering Exploration and Advancement Group.  This, in turn, has led to dramatic new efficiencies and product quality improvement in our manufacturing processes.  All, leading to lower prices for our customers.
  • Customer Service: Years of experience with Davenport products allows our staff to provide technical support and real solutions to customers, rather than simply filling part orders.  Our online customer portal allows for easy, quick order placement at the push of a button.
  • “No Hassles” Return Policy: Order the wrong part or the part not working properly.  No problem.  Return it and we’ll replace it immediately.

Finally, our mission as an OEM is to always offer the widest selection of genuine, high-quality Davenport Replacement Parts at the most competitive prices.  Ultimately, we firmly believe by following this path, we will continue to provide strong value to our customers.  If you have any questions about how we can help you find the appropriate Davenport parts or attachments for your machine, please feel free to contact us or call 585-235-4545.

Safety Matters! Pneumatic Collet Chucking for Davenport Machines

The 1605-SA Pneumatic Collet Chucking unit is an update to the classic lever operated chucking mechanism. On machines equipped with pneumatic control systems, the addition of this unit can be a great way to improve the user experience and remove a possible source of error. On standard lever actuated chucking mechanism, operators have to hit the lever repetitively throughout the course of a job to load bars and set collet tension. The pneumatic system can be used to open/close the collet during bar loads to lessen operator fatigue, and remove a means of direct operator to machine interaction. The use of pneumatics allows for easy pushbutton operation as opposed to repeatedly hitting the lever open or closed. The 1605-SA includes mounts, modified lever, control valve assembly, and other necessary hardware to connect the unit to the electrical/pneumatic systems.

Key Features:

  • Eliminates need to manually close chuck, switches action from lever to push button.
  • Improves setup time and minimizes recurring problems

CJWinter and Davenport Machine OEM parts are constantly being redesigned to maximize the value to the Customer. Any parts supplier can sell you yet another replacement part for your problem. Let the team at Davenport Machine supply you with a cost effective solution to it instead. Contact your local distributor, or call us directly at 1-800-344-5748 and ask about our many new and improved products that will help put profits back where they belong… in your pocket.

If you found the above information valuable, take a deeper dive into our “Did You Know?” Engineering Bulletins that allow you to stay up-to-date with Davenport News as well as announcements about our attachments and replacement parts.  The bulletins have proven to be a valuable resource for anyone who uses our product.

Safety Matters! Pneumatic Collet Latch System for Davenport Machines

The 5020-20-SA is a member of a series of parts designed to make functions of a traditional Davenport Machine more accessible from the outside of an enclosure. Increasingly strict safety standards require more operations to take place behind walls of enclosures and integrated door interlock systems to keep users safe. This collet latch system enables pneumatic control of part feed from the outside of the machine, and is an integral part to interlock systems. Commonly used with the door interlock system offered by Davenport, this assembly can also be used in addition to other interlock systems to clear the spindles in case of a fault. The 5020-20-SA includes cylinder bracket assembly, collet latch pneumatics package, and other hardware necessary to connect the unit to the electrical/pneumatic systems.

Key Features:

  • Pneumatic control enables part feed from machine exterior
  • The latch can be lifted to be able to clear out the spindles before stopping the machine.
  • Raising the latch can also be used to warm up the machine before running production.
  • Commonly used in conjunction with the door interlock kit to clear spindles in case of fault.

CJWinter and Davenport Machine OEM replacement parts and assemblies are constantly being re-engineered to maximize the value to the Customer. Let the team at Davenport Machine supply you with a cost effective solution. Contact your Davenport Authorized Distributor, or call us directly at 1-800-344-5748 and ask about our many new and improved products that will help put profits back where they belong… in your pocket.

If you found the above information valuable, take a deeper dive into our “Did You Know?” Engineering Bulletins that allow you to stay up-to-date with Davenport News as well as announcements about our attachments and replacement parts.  The bulletins have proven to be a valuable resource for anyone who uses our product.